CaO-P2O5 glass hydroxyapatite double-layer plasma-sprayed coating: in vitro bioactivity evaluation.

نویسندگان

  • M P Ferraz
  • F J Monteiro
  • J D Santos
چکیده

Double-layer composite coatings composed of a P2O5-based glass/Ca10(PO4)6(OH)2 (HA) mixture top layer and a simple HA underlayer, on Ti-6Al-4V substrates, were prepared using a plasma-spraying technique. The in vitro bioactivity of these coatings was assessed by immersion testing in simulated body fluid. Both scanning electron microscopy (SEM) analysis and the ionic solution changes followed by atomic absorption spectroscopy and the molybdenum blue method demonstrated that these composite coatings induce a faster surface Ca-P layer formation than the simple HA coatings used as a control. X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the Ca-P layer formed was apatite. The combination of SEM and XPS analyses showed that the apatite layer was a calcium-deficient hydroxyapatite with a Ca/P ranging from 1.3 to 1.4 with CO3(2-) groups contained in the structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro evaluation of apatite/wollastonite glass–ceramic nano biocoatings on 316 alloys by plasma-sprayed

Among bioactive ceramics, the apatite/wollastonite (A/W) glass ceramic, containing apatite and wollastonite crystals in the glassy matrix, has been largely studied because of good bioactivity and used in some fields of medicine, especially in orthopedics and dentistry. However, medical applications of bioceramic are limited to non-load bearing applications because of their poor mechanical prope...

متن کامل

EFFECT OF TiO2 ADDITION ON BONDING STRENGTH OF CaO-P2O5 Na2O-TiO2 BIOACTIVE GLASS CERAMIC COATING

The effect of titanium dioxide addition on bonding strength of CaO-P2O5 -Na 2O-TiO2glass-ceramic system was investigated as a coating on titanium substrate. Thus, different amounts of TiO2 (2, 3.5 and 5mol %) were added to the base glass batch composition. The prepared glaze slips were applied on the substrate by dip coating method, dried and then heat treated at various temperatures. After tha...

متن کامل

CaO-P2O5 Glass-Hydroxyapatite Thin Films Obtained by Laser Ablation: Characterisation and In Vitro Bioactivity Evaluation

Hydroxyapatite (HA) coatings have been applied to improve adhesion of non-cemented implants to host bone. Plasma spraying is the most common technique leading to thick calcium phosphate films (>120μm). Pulse laser deposition (PLD), is a possible alternative method to obtain thin (<10 μm), well adherent hydroxyapatite (HA) films. Similarly to synthetic HA, biological apatites contain Ca, PO4 and...

متن کامل

Push-out testing and histological evaluation of glass reinforced hydroxyapatite composites implanted in the tibia of rabbits.

In vitro and in vivo bioactivity studies were performed to assess the biocompatibility of CaO-P2O5 glass-reinforced hydroxyapatite (GR-HA) composites. The ability to form an apatite layer by soaking in simulated body fluid (SBF) was examined and surfaces were characterized using FTIR reflection and thin-film X-ray diffraction analyses. Qualitative histology, histomorphometric measurements, and ...

متن کامل

In Vitro Immersion Behavior of Cold Sprayed Hydroxyapatite/Titanium Composite Coatings

In previous study, dense and homogenous 20wt% HAP/Ti composite coatings were successfully deposited on Ti substrates by cold gas dynamic spray technique. The results revealed that the phase composition of the HAP in the deposit is identical to that of the precursor powder and the bonding strength of the deposit is comparable/better to that of the plasma sprayed HAP. A relatively higher corrosio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research

دوره 45 4  شماره 

صفحات  -

تاریخ انتشار 1999